Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64.602
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612777

RESUMEN

High-grade gliomas (HGGs) and glioblastoma multiforme (GBM) are characterized by a heterogeneous and aggressive population of tissue-infiltrating cells that promote both destructive tissue remodeling and aberrant vascularization of the brain. The formation of defective and permeable blood vessels and microchannels and destructive tissue remodeling prevent efficient vascular delivery of pharmacological agents to tumor cells and are the significant reason why therapeutic chemotherapy and immunotherapy intervention are primarily ineffective. Vessel-forming endothelial cells and microchannel-forming glial cells that recapitulate vascular mimicry have both infiltration and destructive remodeling tissue capacities. The transmembrane protein TMEM230 (C20orf30) is a master regulator of infiltration, sprouting of endothelial cells, and microchannel formation of glial and phagocytic cells. A high level of TMEM230 expression was identified in patients with HGG, GBM, and U87-MG cells. In this study, we identified candidate genes and molecular pathways that support that aberrantly elevated levels of TMEM230 play an important role in regulating genes associated with the initial stages of cell infiltration and blood vessel and microchannel (also referred to as tumor microtubule) formation in the progression from low-grade to high-grade gliomas. As TMEM230 regulates infiltration, vascularization, and tissue destruction capacities of diverse cell types in the brain, TMEM230 is a promising cancer target for heterogeneous HGG tumors.


Asunto(s)
Glioblastoma , Glioma , Enfermedad de Parkinson , Humanos , Glioblastoma/genética , Proteínas de la Membrana/genética , Células Endoteliales , 60489 , Glioma/genética , Neuroglía , Neovascularización Patológica/genética
2.
Oncol Res ; 32(4): 643-658, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560570

RESUMEN

The platinum-based chemotherapy is one of the most frequently used treatment protocols for lung adenocarcinoma (LUAD), and chemoresistance, however, usually results in treatment failure and limits its application in the clinic. It has been shown that microRNAs (miRNAs) play a significant role in tumor chemoresistance. In this study, miR-125b was identified as a specific cisplatin (DDP)-resistant gene in LUAD, as indicated by the bioinformatics analysis and the real-time quantitative PCR assay. The decreased serum level of miR-125b in LUAD patients was correlated with the poor treatment response rate and short survival time. MiR-125b decreased the A549/DDP proliferation, and the multiple drug resistance- and autophagy-related protein expression levels, which were all reversed by the inhibition of miR-125b. In addition, xenografts of human tumors in nude mice were suppressed by miR-125b, demonstrating that through autophagy regulation, miR-125b could reverse the DDP resistance in LUAD cells, both in vitro and in vivo. Further mechanistic studies indicated that miR-125b directly repressed the expression levels of RORA and its downstream BNIP3L, which in turn inhibited autophagy and reversed chemoresistance. Based on these findings, miR-125b in combination with DDP might be an effective treatment option to overcome DDP resistance in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , MicroARNs , Proteínas Supresoras de Tumor , Animales , Ratones , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones Desnudos , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Apoptosis/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , MicroARNs/genética , MicroARNs/metabolismo , Autofagia/genética , Regulación Neoplásica de la Expresión Génica , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/farmacología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas/genética
3.
Front Cell Infect Microbiol ; 14: 1380976, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596648

RESUMEN

Introduction: The hemin acquisition system is composed of an outer membrane TonB-dependent transporter that internalizes hemin into the periplasm, periplasmic hemin-binding proteins to shuttle hemin, an inner membrane transporter that transports hemin into the cytoplasm, and cytoplasmic heme oxygenase to release iron. Fur and HemP are two known regulators involved in the regulation of hemin acquisition. The hemin acquisition system of Stenotrophomonas maltophilia is poorly understood, with the exception of HemA as a TonB-dependent transporter for hemin uptake. Methods: Putative candidates responsible for hemin acquisition were selected via a homolog search and a whole-genome survey of S. maltophilia. Operon verification was performed by reverse transcription-polymerase chain reaction. The involvement of candidate genes in hemin acquisition was assessed using an in-frame deletion mutant construct and iron utilization assays. The transcript levels of candidate genes were determined using quantitative polymerase chain reaction. Results: Smlt3896-hemU-exbB2-exbD2-tonB2 and tonB1-exbB1-exbD1a-exbD1b operons were selected as candidates for hemin acquisition. Compared with the parental strain, hemU and tonB1 mutants displayed a defect in their ability to use hemin as the sole iron source for growth. However, hemin utilization by the Smlt3896 and tonB2 mutants was comparable to that of the parental strain. HemA expression was repressed by Fur in iron-replete conditions and derepressed in iron-depleted conditions. HemP negatively regulated hemA expression. Like hemA, hemU was repressed by Fur in iron-replete conditions; however, hemU was moderately derepressed in response to iron-depleted stress and fully derepressed when hemin was present. Unlike hemA and hemU, the TonB1-exbB1-exbD1a-exbD1b operon was constitutively expressed, regardless of the iron level or the presence of hemin, and Fur and HemP had no influence on its expression. Conclusion: HemA, HemU, and TonB1 contribute to hemin acquisition in S. maltophilia. Fur represses the expression of hemA and hemU in iron-replete conditions. HemA expression is regulated by low iron levels, and HemP acts as a negative regulator of this regulatory circuit. HemU expression is regulated by low iron and hemin levels in a hemP-dependent manner.


Asunto(s)
Hemina , Stenotrophomonas maltophilia , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Hierro/metabolismo
4.
Life Sci Alliance ; 7(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38570189

RESUMEN

Crumbs homolog 1 (CRB1) is one of the key genes linked to retinitis pigmentosa and Leber congenital amaurosis, which are characterized by a high clinical heterogeneity. The Crumbs family member CRB2 has a similar protein structure to CRB1, and in zebrafish, Crb2 has been shown to interact through the extracellular domain. Here, we show that CRB1 and CRB2 co-localize in the human retina and human iPSC-derived retinal organoids. In retina-specific pull-downs, CRB1 was enriched in CRB2 samples, supporting a CRB1-CRB2 interaction. Furthermore, novel interactors of the crumbs complex were identified, representing a retina-derived protein interaction network. Using co-immunoprecipitation, we further demonstrate that human canonical CRB1 interacts with CRB1 and CRB2, but not with CRB3, which lacks an extracellular domain. Next, we explored how missense mutations in the extracellular domain affect CRB1-CRB2 interactions. We observed no or a mild loss of CRB1-CRB2 interaction, when interrogating various CRB1 or CRB2 missense mutants in vitro. Taken together, our results show a stable interaction of human canonical CRB2 and CRB1 in the retina.


Asunto(s)
Amaurosis Congénita de Leber , Retinitis Pigmentosa , Animales , Humanos , Pez Cebra/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Retina/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Amaurosis Congénita de Leber/genética , Amaurosis Congénita de Leber/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Portadoras/metabolismo
5.
Viral Immunol ; 37(3): 159-166, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38588555

RESUMEN

The high global prevalence of hepatitis B and hepatitis C and the poor prognosis of hepatitis B and hepatitis C-associated hepatocellular carcinoma (HCC), necessitates the early diagnosis and treatment of the disease. Recent studies show that cell-to-cell communication via extracellular vesicles (EVs) is involved in the HCC progression. The objective of the following study was to explore the role of EVs in the progression of viral-induced HCC and investigate their potential for the early diagnosis of cancer. First, the mRNA derived from EVs of HCC patients was compared to the mRNA derived from EVs from the healthy controls. Expression analysis of ANGPTL3, SH3BGRL3, and IFITM3 genes from the EVs was done. Afterward, to confirm whether hepatocytes can uptake EVs, HuH7 cells were exposed to EVs, and the expression analysis of downstream target genes (AKT, TNF-α, and MMP-9) in Huh7 cells was done. Transcriptional analysis showed that in the EVs from HCC patients, the expression levels of ANGPTL3, SH3BGRL3, and IFITM3 were significantly increased by 2.62-, 4.3-, and 9.03-folds, respectively. The downstream targets, AKT, TNF-α, and MMP-9, also showed a considerable change of 4.1-, 1.46-, and 5.05-folds, respectively, in Huh7 cells exposed to HCC EVs. In conclusion, the following study corroborates the role of EVs in HCC progression. Furthermore, the significant alteration in mRNA levels of the selected genes demonstrates their potential to be used as possible biomarkers for the early diagnosis of HCC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Carcinoma Hepatocelular , Vesículas Extracelulares , Hepatitis B , Hepatitis C , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas Proto-Oncogénicas c-akt , Factor de Necrosis Tumoral alfa/metabolismo , Hepatitis C/genética , Biomarcadores/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , ARN Mensajero/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína 3 Similar a la Angiopoyetina
6.
Egypt J Immunol ; 31(2): 28-43, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38615202

RESUMEN

Urinary bladder cancer (BC) is the ninth most common cancer worldwide. At present, the clinical diagnosis of BC depends on self-reported symptoms, tissue biopsy specimens by cystoscopy and from voided urine cytology. However, cystoscopy is an invasive examination and voided urine cytology has low sensitivity, which might provoke misdiagnosis. The search for cancer biomarkers in blood is worthy of intense attention due to patients' comfort and ease of sampling. This work aimed to study expression of mRNA metadherin (MTDH) in plasma, serum BC specific antigen 1 (BLCA-1) and cystatin C as biomarkers of BC and their relation to different disease stages. This study included 59 BC patients, 11 patients with benign bladder lesion and 18 subjects as normal controls. MTDH expression was assessed by real time polymerase chain reaction, BLCA-1, and cystatin C by the enzyme linked immunosorbent assay. The three biomarkers were elevated in BC patients than patients with benign bladder diseases and controls. Patients with BC grade 3 and 4 had higher cystatin C, BLCA-1 and MTDH in comparison to patients with grade 1 and grade 2 (p=0.000). The receiver operating characteristic curve analysis showed that BLCA-1 at a cutoff point of 32.5 ng/ml and area under the curve of 1.00, had 100% accuracy, 100% sensitivity, 100% specificity, 100% positive predictive values and 100% negative predictive value. In conclusion, BLCA-1 was a better biomarker than cystatin C and MTDH. Cystatin C, BLCA-1 and MTDH levels, can differentiate between benign bladder lesion and BC and correlated with tumor grades.especially with OL-HDF compared to HF-HD, with acceptable albumin loss in the dialysate.


Asunto(s)
Proteínas de la Membrana , Proteínas de Unión al ARN , Neoplasias de la Vejiga Urinaria , Humanos , Biomarcadores de Tumor/genética , Cistatina C/sangre , Cistatina C/genética , Ensayo de Inmunoadsorción Enzimática , Proteínas de la Membrana/sangre , Proteínas de la Membrana/genética , Proteínas de Unión al ARN/sangre , Proteínas de Unión al ARN/genética , Neoplasias de la Vejiga Urinaria/genética
7.
Orphanet J Rare Dis ; 19(1): 167, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637882

RESUMEN

The report covers the current and past activities of the department Molecular Genetics-Function and Therapy (MGFT) at the Cyprus Institute of Neurology and Genetics (CING), an affiliated Reference Center for the European Reference Network on Rare Endocrine Conditions (Endo-ERN).The presented data is the outcome of > 15 years long standing collaboration between MGFT and endocrine specialists from the local government hospitals and the private sector. Up-to-date > 2000 genetic tests have been performed for the diagnosis of inherited rare endocrine disorders. The major clinical entities included Congenital Adrenal Hyperplasia (CAH) due to pathogenic variants in CYP21A2 gene and Multiple Endocrine Neoplasia (MEN) type 2 due to pathogenic variants in the RET proto-oncogene. Other rare and novel pathogenic variants in ANOS1, WDR11, FGFR1, RNF216, and CHD7 genes were also found in patients with Congenital Hypogonadotropic Hypogonadism. Interestingly, a few patients with Disorders of Sexual Differentiation (DSD) shared rare pathogenic variants in the SRD5A2, HSD17B3 and HSD3B2 while patients with Glucose and Insulin Homeostasis carried theirs in GCK and HNF1A genes. Lastly, MGFT over the last few years has established an esteemed diagnostic and research program on premature puberty with emphasis on the implication of MKRN3 gene on the onset of the disease and the identification of other prognosis biomarkers.As an Endo-ERN member MGFT department belongs to this large European network and holds the same humanistic ideals which aim toward the improvements of health care for patients with rare endocrine conditions in respect to improved and faster diagnosis.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Enfermedades del Sistema Endocrino , Neoplasia Endocrina Múltiple Tipo 2a , Humanos , Chipre , Neoplasia Endocrina Múltiple Tipo 2a/diagnóstico , Neoplasia Endocrina Múltiple Tipo 2a/genética , Enfermedades del Sistema Endocrino/diagnóstico , Enfermedades del Sistema Endocrino/genética , Hiperplasia Suprarrenal Congénita/diagnóstico , Hiperplasia Suprarrenal Congénita/genética , Pruebas Genéticas , Ubiquitina-Proteína Ligasas , Esteroide 21-Hidroxilasa/genética , Proteínas de la Membrana/genética , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa
8.
CRISPR J ; 7(2): 100-110, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579141

RESUMEN

Inherited retinal diseases (IRDs) are a heterogeneous group of blinding genetic disorders caused by pathogenic variants in genes expressed in the retina. In this study, we sought to develop a method for rapid evaluation of IRD gene variant pathogenicity by inducing expression of retinal genes in patient-derived fibroblasts using CRISPR-activation (CRISPRa). We demonstrate CRISPRa of CRB1 expression in fibroblasts derived from patients with retinitis pigmentosa, enabling investigation of pathogenic mechanisms associated with specific variants. We show the CRB1 c.4005 + 1G>A variant caused exon 11 skipping in CRISPR-activated fibroblasts and retinal organoids (ROs) derived from the same RP12 patient. The c.652 + 5G>C variant was shown to enhance exon 2 skipping in CRISPR-activated fibroblasts and differentially affected CRB1 isoform expression in fibroblasts and ROs. Our study demonstrates an accessible platform for transcript screening of IRD gene variants in patient-derived fibroblasts, which can potentially be applied for rapid pathogenicity assessments of any gene variant.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Humanos , Especies Reactivas de Oxígeno/metabolismo , Virulencia , Edición Génica , Expresión Génica , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
9.
BMC Ophthalmol ; 24(1): 167, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622537

RESUMEN

PURPOSE: The goal of the study was to search for novel bi-allelic CRB1 mutations, and then to analyze the CRB1 literature at the genotypic and phenotypic levels. APPROACH: We screened various variables such as the CRB1 mutation types, domains, exons, and genotypes and their relation with specific ocular phenotypes. An emphasis was given to the bi-allelic missense and nonsense mutations because of their high prevalence compared to other mutation types. Finally, we quantified the effect of various non-modifiable factors over the best-corrected visual acuity oculus uterque (BCVA OU) using multivariate linear regression models and identified genetic interactions. RESULTS: A novel bi-allelic missense in the exon 9 of CRB1; c.2936G > A; p.(Gly979Asp) was found to be associated with rod-cone dystrophy (RCD). CRB1 mutation type, exons, domains, and genotype distribution varied significantly according to fundus characteristics, such as peripheral pigmentation and condition, optic disc, vessels, macular condition, and pigmentation (P < 0.05). Of the 154 articles retrieved from PubMed, 96 studies with 439 bi-allelic CRB1 patients were included. Missense mutations were significantly associated with an absence of macular pigments, pale optic disc, and periphery pigmentation, resulting in a higher risk of RCD (P < 0.05). In contrast, homozygous nonsense mutations were associated with macular pigments, periphery pigments, and a high risk of LCA (P < 0.05) and increased BCVA OU levels. We found that age, mutation types, and inherited retinal diseases were critical determinants of BCVA OU as they significantly increased it by 33% 26%, and 38%, respectively (P < 0.05). Loss of function alleles additively increased the risk of LCA, with nonsense having a more profound effect than indels. Finally, our analysis showed that p.(Cys948Tyr) and p.(Lys801Ter) and p.(Lys801Ter); p.(Cys896Ter) might interact to modify BCVA OU levels. CONCLUSION: This meta-analysis updated the literature and identified genotype-phenotype associations in bi-allelic CRB1 patients.


Asunto(s)
Codón sin Sentido , Proteínas del Tejido Nervioso , Humanos , Alelos , Proteínas del Tejido Nervioso/genética , Estudios de Asociación Genética , Retina , Fenotipo , Mutación , Proteínas del Ojo/genética , Linaje , Análisis Mutacional de ADN , Proteínas de la Membrana/genética
10.
Oncol Rep ; 51(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38624012

RESUMEN

Prostate cancer (PCa) is one the most common malignancies in men. The high incidence of bone metastasis years after primary therapy suggests that disseminated tumor cells must become dormant, but maintain their ability to proliferate in the bone marrow. Abscisic acid (ABA) is a stress response molecule best known for its regulation of seed germination, stomal opening, root shoot growth and other stress responses in plants. ABA is also synthesized by mammalian cells and has been linked to human disease. The aim of the present study was to examine the role of ABA in regulating tumor dormancy via signaling through lanthionine synthetase C­like protein 2 (LANCL2) and peroxisome proliferator activated receptor γ (PPARγ) receptors. ABA signaling in human PCa cell lines was studied using targeted gene knockdown (KD), western blotting, quantitative PCR, cell proliferation, migration, invasion and soft agar assays, as well as co­culture assays with bone marrow stromal cells. The data demonstrated that ABA signaling increased the expression of p21, p27 and p16, while inhibiting viability, migration, invasion and colony size in a reversable manner without toxicity. ABA also induced p38MAPK activation and NR2F1 signaling. Targeted gene KD of LANCL2 and PPARγ abrogated the cellular responses to ABA. Taken together, these data demonstrate that ABA may induce dormancy in PCa cell lines through LANCL2 and PPARγ signaling, and suggest novel targets to manage metastatic PCa growth.


Asunto(s)
Ácido Abscísico , Neoplasias de la Próstata , Masculino , Animales , Humanos , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Transducción de Señal , Neoplasias de la Próstata/genética , Línea Celular Tumoral , Semillas/metabolismo , Mamíferos/metabolismo , Proteínas de la Membrana/genética , Proteínas de Unión a Fosfato/metabolismo
11.
J Cancer Res Clin Oncol ; 150(4): 196, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625581

RESUMEN

BACKGROUND: Metadherin (MTDH) and ubiquitin specific protease 7 (USP7) have been identified to involve in the tumorigenesis of cervical cancer (CC). USP7 is one of the deubiquitinating enzymes. Here, this study aimed to explore whether USP7 affected CC progression via interacting with MTDH and regulating its stability via deubiquitination. METHODS: qRT-PCR and western blotting assays detected the levels of genes and proteins. Functional analysis was conducted using 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transwell, and tube formation assays, respectively. Proteins between USP7 and MTDH were identified by co-immunoprecipitation assay. A mouse xenograft model was established for in vivo analysis. RESULTS: MTDH was highly expressed in CC tissues and cells, silencing of MTDH suppressed CC cell proliferation, migration, invasion, angiogenesis, and macrophage M2 polarization. Mechanistically, USP7 directly bound to MTDH, and maintained its stability by removing ubiquitination on MTDH. CC tissues and cells showed high USP7 expression, and USP7 knockdown also inhibited CC cell proliferation, migration, invasion, angiogenesis and macrophage M2 polarization, and these effects mediated by USP7 knockdown were reversed by MTDH overexpression. Moreover, USP7 knockdown impeded CC growth in vivo by regulating MTDH. CONCLUSION: Collectively, USP7 promoted CC cell proliferation, migration, invasion, angiogenesis, and macrophage M2 polarization in vitro, as well as tumor growth in vivo by regulating MTDH.


Asunto(s)
Neoplasias del Cuello Uterino , Humanos , Animales , Ratones , Femenino , Neoplasias del Cuello Uterino/genética , Peptidasa Específica de Ubiquitina 7 , Factores de Transcripción , Transformación Celular Neoplásica , Carcinogénesis , Modelos Animales de Enfermedad , Proteínas de la Membrana/genética , Proteínas de Unión al ARN/genética
12.
Cell Mol Life Sci ; 81(1): 163, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38570362

RESUMEN

Proteolytic release of transmembrane proteins from the cell surface, the so called ectodomain shedding, is a key process in inflammation. Inactive rhomboid 2 (iRhom2) plays a crucial role in this context, in that it guides maturation and function of the sheddase ADAM17 (a disintegrin and metalloproteinase 17) in immune cells, and, ultimately, its ability to release inflammatory mediators such as tumor necrosis factor α (TNFα). Yet, the macrophage sheddome of iRhom2/ADAM17, which is the collection of substrates that are released by the proteolytic complex, is only partly known. In this study, we applied high-resolution proteomics to murine and human iRhom2-deficient macrophages for a systematic identification of substrates, and therefore functions, of the iRhom2/ADAM17 proteolytic complex. We found that iRhom2 loss suppressed the release of a group of transmembrane proteins, including known (e.g. CSF1R) and putative novel ADAM17 substrates. In the latter group, shedding of major histocompatibility complex class I molecules (MHC-I) was consistently reduced in both murine and human macrophages when iRhom2 was ablated. Intriguingly, it emerged that in addition to its shedding, iRhom2 could also control surface expression of MHC-I by an undefined mechanism. We have demonstrated the biological significance of this process by using an in vitro model of CD8+ T-cell (CTL) activation. In this model, iRhom2 loss and consequent reduction of MHC-I expression on the cell surface of an Epstein-Barr virus (EBV)-transformed lymphoblastoid cell line dampened activation of autologous CTLs and their cell-mediated cytotoxicity. Taken together, this study uncovers a new role for iRhom2 in controlling cell surface levels of MHC-I by a dual mechanism that involves regulation of their surface expression and ectodomain shedding.


Asunto(s)
Proteínas Portadoras , Infecciones por Virus de Epstein-Barr , Animales , Humanos , Ratones , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Proteínas Portadoras/metabolismo , Herpesvirus Humano 4 , Complejo Mayor de Histocompatibilidad , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Noqueados
13.
J Exp Clin Cancer Res ; 43(1): 98, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561856

RESUMEN

BACKGROUND: The complement inhibitor CSMD1 acts as a tumor suppressor in various types of solid cancers. Despite its high level of expression in the brain, its function in gliomas, malignant brain tumors originating from glial cells, has not been investigated. METHODS: Three cohorts of glioma patients comprising 1500 patients were analyzed in our study along with their clinical data. H4, U-118 and U-87 cell lines were used to investigate the tumor suppressor function of CSMD1 in gliomas. PDGFB-induced brain tumor model was utilized for the validation of in vitro data. RESULTS: The downregulation of CSMD1 expression correlated with reduced overall and disease-free survival, elevated tumor grade, wild-type IDH genotype, and intact 1p/19q status. Moreover, enhanced activity was noted in the neuroinflammation pathway. Importantly, ectopic expression of CSMD1 in glioma cell lines led to decreased aggressiveness in vitro. Mechanically, CSMD1 obstructed the TNF-induced NF-kB and STAT3 signaling pathways, effectively suppressing the secretion of IL-6 and IL-8. There was also reduced survival in PDGFB-induced brain tumors in mice when Csmd1 was downregulated. CONCLUSIONS: Our study has identified CSMD1 as a tumor suppressor in gliomas and elucidated its role in TNF-induced neuroinflammation, contributing to a deeper understanding of glioma pathogenesis.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Animales , Ratones , Enfermedades Neuroinflamatorias , Proteínas Proto-Oncogénicas c-sis/genética , Glioma/patología , Neoplasias Encefálicas/patología , Supervivencia sin Enfermedad , Isocitrato Deshidrogenasa/genética , Mutación , Proteínas de la Membrana/genética , Proteínas Supresoras de Tumor/genética
14.
Mol Genet Genomic Med ; 12(4): e2425, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38562051

RESUMEN

BACKGROUND: To explore the clinical application value of pre-conception expanded carrier screening (PECS) in the Chinese Han ethnicity population of childbearing age. METHODS: The results of genetic testing of infertile parents who underwent PECS in the Reproductive Medicine Center of the Second Affiliated Hospital of Zhengzhou University, China, from September 2019 to December 2021, were retrospectively analyzed. The carrier rate of single gene disease, the detection rate of high-risk parents, and the clinical outcome of high-risk parents were statistically analyzed. RESULTS: A total of 1372 Chinese Han ethnicity patients underwent PECS, among which 458 patients underwent the extended 108-gene test, their overall carrier rate was 31.7%, and the detection rate of high-risk parents was 0.3%. The highest carrier rates were SLC22A (2.4%), ATP7B (2.4%), MMACHC (2.2%), PAH (1.8%), GALC (1.8%), MLC1 (1.3%), UNC13D (1.1%), CAPN3 (1.1%), and PKHD1 (1.1%). There were 488 women with fragile X syndrome-FMR1 gene detection, and 6 patients (1.2%) had FMR1 gene mutation. A total of 426 patients were screened for spinal muscular atrophy-SMN1, and the carrier rate was 3.5%, and the detection rate of parents' co-carrier was 0.5%. CONCLUSION: Monogenic recessive hereditary diseases had a high carrier rate in the population. Pre-pregnancy screening could provide good prenatal and postnatal care guidance for patients and preimplantation genetic testing for monogenic/single gene disorders (PGT-M) and prenatal diagnosis could provide more precise reproductive choices for high-risk parents.


Asunto(s)
Pruebas Genéticas , Atrofia Muscular Espinal , Embarazo , Humanos , Femenino , Estudios Retrospectivos , Pruebas Genéticas/métodos , Diagnóstico Prenatal/métodos , Mutación , Atrofia Muscular Espinal/genética , Proteína del Retraso Mental del Síndrome del Cromosoma X Frágil/genética , Oxidorreductasas/genética , Proteínas de la Membrana/genética
15.
Elife ; 132024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573307

RESUMEN

The perinuclear theca (PT) is a dense cytoplasmic web encapsulating the sperm nucleus. The physiological roles of PT in sperm biology and the clinical relevance of variants of PT proteins to male infertility are still largely unknown. We reveal that cylicin-1, a major constituent of the PT, is vital for male fertility in both mice and humans. Loss of cylicin-1 in mice leads to a high incidence of malformed sperm heads with acrosome detachment from the nucleus. Cylicin-1 interacts with itself, several other PT proteins, the inner acrosomal membrane (IAM) protein SPACA1, and the nuclear envelope (NE) protein FAM209 to form an 'IAM-cylicins-NE' sandwich structure, anchoring the acrosome to the nucleus. WES (whole exome sequencing) of more than 500 Chinese infertile men with sperm head deformities was performed and a CYLC1 variant was identified in 19 patients. Cylc1-mutant mice carrying this variant also exhibited sperm acrosome/head deformities and reduced fertility, indicating that this CYLC1 variant most likely affects human male reproduction. Furthermore, the outcomes of assisted reproduction were reported for patients harbouring the CYLC1 variant. Our findings demonstrate a critical role of cylicin-1 in the sperm acrosome-nucleus connection and suggest CYLC1 variants as potential risk factors for human male fertility.


Asunto(s)
Acrosoma , Infertilidad Masculina , Animales , Humanos , Masculino , Ratones , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Infertilidad Masculina/genética , Proteínas de la Membrana/genética , Semen , Cabeza del Espermatozoide , Espermatozoides
16.
BMC Urol ; 24(1): 78, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575966

RESUMEN

BACKGROUND: Few studies are focusing on the mechanism of erastin acts on prostate cancer (PCa) cells, and essential ferroptosis-related genes (FRGs) that can be PCa therapeutic targets are rarely known. METHODS: In this study, in vitro assays were performed and RNA-sequencing was used to measure the expression of differentially expressed genes (DEGs) in erastin-induced PCa cells. A series of bioinformatic analyses were applied to analyze the pathways and DEGs. RESULTS: Erastin inhibited the expression of SLC7A11 and cell survivability in LNCaP and PC3 cells. After treatment with erastin, the concentrations of malondialdehyde (MDA) and Fe2+ significantly increased, whereas the glutathione (GSH) and the oxidized glutathione (GSSG) significantly decreased in both cells. A total of 295 overlapping DEGs were identified under erastin exposure and significantly enriched in several pathways, including DNA replication and cell cycle. The percentage of LNCaP and PC3 cells in G1 phase was markedly increased in response to erastin treatment. For four hub FRGs, TMEFF2 was higher in PCa tissue and the expression levels of NRXN3, CLU, and UNC5B were lower in PCa tissue. The expression levels of SLC7A11 and cell survivability were inhibited after the knockdown of TMEFF2 in androgen-dependent cell lines (LNCaP and VCaP) but not in androgen-independent cell lines (PC3 and C4-2). The concentration of Fe2+ only significantly increased in TMEFF2 downregulated LNCaP and VCaP cells. CONCLUSION: TMEFF2 might be likely to develop into a potential ferroptosis target in PCa and this study extends our understanding of the molecular mechanism involved in erastin-affected PCa cells.


Asunto(s)
Ferroptosis , Piperazinas , Neoplasias de la Próstata , Masculino , Humanos , Andrógenos , Ferroptosis/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Próstata/metabolismo , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Receptores de Netrina
17.
Medicine (Baltimore) ; 103(14): e37693, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38579072

RESUMEN

The selection of appropriate treatment modalities based on the presence or absence of mutations in KRAS, NRAS, BRAF, and the microsatellite instability (MSI) status has become a crucial consensus in colorectal cancer (CRC) therapy. However, the distribution pattern of these genetic mutations and the prevalence of MSI status in Chinese stage I-III CRCs remain unclear. We retrospectively analyzed clinicopathological features, mutations in the KRAS, NRAS, and BRAF genes, as well as MSI status of 411 patients with stage I-III CRC who underwent surgery from June 2020 to December 2022 in the First Affiliated Hospital of Nanjing Medical University. The mutation rates of KRAS, NRAS, and BRAF were 48.9%, 2.2%, and 3.2%, respectively, and the microsatellite instability-high rate was 9.5%. KRAS mutation was independently associated with mucinous adenocarcinoma. Multivariate analysis suggested that tumor location and mucinous adenocarcinoma were independently associated with BRAF mutation. Only T stage was associated with NRAS mutations in the univariate analysis. Multivariate analysis revealed that factors such as larger tumor size, tumor location, younger age, and poor differentiation were independently associated with microsatellite instability-high status. The results illustrate the mutation frequencies of KRAS, NRAS, BRAF genes and MSI status in stage I-III CRC from the eastern region of China. These findings further validate the associations between these genes status and various clinicopathological characteristics.


Asunto(s)
Adenocarcinoma Mucinoso , Neoplasias Colorrectales , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Inestabilidad de Microsatélites , Proteínas Proto-Oncogénicas p21(ras)/genética , Estudios Retrospectivos , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Mutación , Proteínas de la Membrana/genética , GTP Fosfohidrolasas/genética
18.
World J Gastroenterol ; 30(8): 901-918, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38516242

RESUMEN

BACKGROUND: Metadherin (MTDH) is a key oncogene in most cancer types, including hepatocellular carcinoma (HCC). Notably, MTDH does not affect the stemness pheno-type or immune infiltration of HCC. AIM: To explore the role of MTDH on stemness and immune infiltration in HCC. METHODS: MTDH expression in HCC tissues was detected using TCGA and GEO databases. Immunohistochemistry was used to analyze the tissue samples. MTDH was stably knocked down or overexpressed by lentiviral transfection in the two HCC cell lines. The invasion and migration abilities of HCC cells were evaluated using Matrigel invasion and wound healing assays. Next, we obtained liver cancer stem cells from the spheroids by culturing them in a serum-free medium. Gene expression was determined by western blotting and quantitative reverse transcri-ption PCR. Flow cytometry, immunofluorescence, and tumor sphere formation assays were used to characterize stem-like cells. The effects of MTDH inhibition on tumor growth were evaluated in vivo. The correlation of MTDH with immune cells, immunomodulators, and chemokines was analyzed using ssGSEA and TISIDB databases. RESULTS: HCC tissues expressed higher levels of MTDH than normal liver tissues. High MTDH expression was associated with a poor prognosis. HCC cells overexpressing MTDH exhibited stronger invasion and migration abilities, exhibited a stem cell-like phenotype, and formed spheres; however, MTDH inhibition attenuated these effects. MTDH inhibition suppressed HCC progression and CD133 expression in vivo. MTDH was positively correlated with immature dendritic, T helper 2 cells, central memory CD8+ T, memory B, activated dendritic, natural killer (NK) T, NK, activated CD4+ T, and central memory CD4+ T cells. MTDH was negatively correlated with activated CD8+ T cells, eosinophils, activated B cells, monocytes, macrophages, and mast cells. A positive correlation was observed between the MTDH level and CXCL2 expression, whereas a negative correlation was observed between the MTDH level and CX3CL1 and CXCL12 expression. CONCLUSION: High levels of MTDH expression in patients with HCC are associated with poor prognosis, promoting tumor stemness, immune infiltration, and HCC progression.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Linfocitos T CD8-positivos , Factores de Transcripción/genética , Células Madre/patología , Fenotipo , Línea Celular Tumoral , Proteínas de la Membrana/genética , Proteínas de Unión al ARN/genética
20.
Biol Open ; 13(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38466184

RESUMEN

Here, we report the first characterization of the effects resulting from the manipulation of Soluble-Lamin Associated Protein (SLAP) expression during mammalian brain development. We found that SLAP localizes to the nuclear envelope and when overexpressed causes changes in nuclear morphology and lengthening of mitosis. SLAP overexpression in apical progenitors of the developing mouse brain altered asymmetric cell division, neurogenic commitment and neuronal migration ultimately resulting in unbalance in the proportion of upper, relative to deeper, neuronal layers. Several of these effects were also recapitulated upon Cas9-mediated knockdown. Ultimately, SLAP overexpression during development resulted in a reduction in subcortical projections of young mice and, notably, reduced their exploratory behavior. Our study shows the potential relevance of the previously uncharacterized nuclear envelope protein SLAP in neurodevelopmental disorders.


Asunto(s)
Conducta Exploratoria , Membrana Nuclear , Animales , Ratones , Encéfalo , Laminas , Mamíferos , Proteínas de la Membrana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...